„Denken heißt vergleichen“
„To think is to compare“
Measuring the Size of Logistics Markets and Logistics Cost

Findings from the 2011 European „Top 100“ Study
Leipzig, May 2, 2012

Prof. Peter Klaus, D.B.A./Boston Univ.
Friedrich-Alexander-Universität Erlangen-Nürnberg
Fraunhofer Group for Supply Chain Services SCS

<peter.klaus@wiso.uni-erlangen.de>
Agenda

- The Nuernberg „Top 100“ Studies
- „PPP“ - a robust definition of logistics
- Idea of triangulation:
 - three independent estimation approaches
 - From the „bottom“ of transportation statistics „up“ to warehouse handling, planning and administration
 - Employment statistics, logistics value added, and national logistics expenditures
 - „Top down“ from reported industry sales to industry-specific logistics cost shares
- Current results and open ends
- Vision of a global „Logistics Expenditure and Performance Observatory“
I. The Nuernberg „Top 100“ Studies

- Started in the mid-1990’s as an effort to identify the „top 100“ logistics service providers in Germany
- Gradually developed three independent estimation approaches for „total national logistics expenditures“ comp. to US
- Annual assessment of market shares, market growth, by segments,
- … expanded estimates to other European countries – currently 27+2, Turkey, China
- still: „work in progress“
II. A robust „functional“ definition of Logistics and logistics expenditure: „TUL“ resp. „PPP“ (Placing, Pacing, Patterning)

- supply chain stage linkages included, intra-plant and –store-logistics excluded:

![Diagram showing logistics services covered by this study]

- Geographical horizon:

![Maps showing geographical horizon]

- Functional (not an „institutional“) approach:

 Logistics expenditures as the sum of (consolidated) third party and shipper/user cost
Agenda

• The Nuernberg „Top 100“ Studies
• „PPP“ - a robust definition of logistics

• Idea of triangulation:
 three independent estimation approaches
 - From the „bottom“ of transportation statistics „up“ to warehouse handling, planning and administration
 - Employment statistics, logistics value added, and national logistics expenditures
 - „Top down“ from reported industry sales to industry-specific logistics cost shares

• Current results and open ends
• Vision of a global „Logistics Expenditure and Performance Observatory“
III-1. The idea of „triangulation“:
three independent estimation approaches

I. Supply-Side Approach:
„Bottom Up“ from
Transportation
Statistics to Logistics

II. From Employment Statistics
To labor expenditure to
cumulative national
value added (GDP) and
sales/cost total

III. Demand Side
Approach:
– „Top Down“ from
industry revenue data
through logistics
expense percentages

National Logistics Bill
Germany: € 212 b
EUR 29: € 930 b
III-2. First: From the „bottom“ of transportation statistics „up“wards to estimating warehouse & inventory related and planning and admin. activity cost

- transport tonnage and tokm reports-
- National cargo vehicle statistics
- estimates of avg. annual cost per cargo vehicle * nr. vehicles = total national cargo transportation cost

- add estimate for related whse/inv., planning/admin. expenditures for total logistics expenditure estimate

- Additional take-aways: transp. productivity metrics

<table>
<thead>
<tr>
<th>Vehicle load capacity</th>
<th>Hired fleet</th>
<th>Own fleet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thousand</td>
<td>dumper</td>
</tr>
<tr>
<td></td>
<td>vehicles</td>
<td>in thousand</td>
</tr>
<tr>
<td></td>
<td>in total</td>
<td></td>
</tr>
<tr>
<td>1.0 to 3.5 to (reported)</td>
<td>71.5</td>
<td>2.0</td>
</tr>
<tr>
<td>up to 7.5 to</td>
<td>32.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Sub total small trucks, regional traffic</td>
<td>104.2</td>
<td>4.1</td>
</tr>
<tr>
<td>up to 9.0 to</td>
<td>17.1</td>
<td>2.5</td>
</tr>
<tr>
<td>up to 14.0 to</td>
<td>39.8</td>
<td>7.3</td>
</tr>
<tr>
<td>> 14.0 to</td>
<td>58.6</td>
<td>12.2</td>
</tr>
<tr>
<td>Tractors</td>
<td>154.6</td>
<td>35.0</td>
</tr>
<tr>
<td>Sub total heavy trucks, long-distance</td>
<td>270.1</td>
<td>22.1</td>
</tr>
<tr>
<td>Vehicles not registered</td>
<td>83.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Sum</td>
<td>457.3</td>
<td>26.2</td>
</tr>
</tbody>
</table>

I. Supply-Side Approach: „Bottom Up“ from Transportation Statistics to Logistics
II. From Employment Statistics To Personnel Expense Cumulative National Value Added (GDP)
III. Demand Side Approach: – „Top Down“ from Industry Revenue Data through Logistics Expense Percentages

© Peter Klaus
Leipzig, May 2, 2012: Measuring Logistics
Chart Nr. 8

Fraunhofer
III-3. Second: from logistics employment statistics to logistics sector „value added“ and total national logistics expenditures

- National employment statistics by job category, total wages per employee and employer industry
- Estimate of logistics share for „mixed“ job classes, add self-employed etc.
- Estimate of national logistics labor cost expenditure
- Add „other“ value added components (taxes, depreciation, profits,) for logistics sector „value added“
- Add logistics sector purchases from other sectors for total national logistics spending

addit. take-aways: VA-and employment perspective, elimination of double counts
III-4. Third: „top down“ estimate from industry sales to logistics cost shares by industry

<table>
<thead>
<tr>
<th>Industry</th>
<th>Basic material bn. €</th>
<th>Logistics costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>total</td>
</tr>
<tr>
<td>1. Agriculture, forestry</td>
<td>27.6</td>
<td>11.0</td>
</tr>
<tr>
<td>2. Agriculture, forestry</td>
<td>0.0</td>
<td>45.2</td>
</tr>
<tr>
<td>3. Whole sale with agricultural basic materials</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4. Whole sale with agricultural consumer goods</td>
<td>0.4</td>
<td>9.0</td>
</tr>
<tr>
<td>5. Fishing</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6. Construction</td>
<td>9.2</td>
<td>27.0</td>
</tr>
<tr>
<td>7. Mining</td>
<td>0.0</td>
<td>51.5</td>
</tr>
<tr>
<td>8. Whole sale with wood, construction material etc.</td>
<td>0.0</td>
<td>15.0</td>
</tr>
<tr>
<td>9. Whole sale with stones, earths etc.</td>
<td>0.0</td>
<td>89.8</td>
</tr>
<tr>
<td>10. Civil engineering</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11. Whole sale with construction elements, metal,</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12. Installation, crafts</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13. Other construction services</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14. Retail DIY</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Industry revenues based on VAT data
- Estimates of industry-specific „downstream“ logistics spending as % of industry revenues
- Total spending of all industries

addit. take-aways: logistics expenditures by industry; basis for macro-ec. input-output-matrix of goods flows and interrelationships
Agenda

• The Nuernberg „Top 100“ Studies
• „PPP“ - a robust definition of logistics
• Idea of triangulation:
 three independent estimation approaches
 - From the „bottom“ of transportation statistics „up“
 to warehouse handling, planning and administration
 - Employment statistics, logistics value added,
 and national logistics expenditures
 - „Top down“ from reported industry sales to
 industry-specific logistics cost shares

• Current results and open ends
• Vision of a global „Logistics Expenditure and
 Performance Observatory“
IV-1. Findings: „national logistics expenditures“ Germany/EU 29

Data status 2010

Logistics market „D/EU“

2010: € 212/930 b.
2.7/10+ m. Jobs

Logistics Industry Suppliers
40%, i.e. € 80/400 b.

Logistics-“induced“ Employment in remote industries
ca. 1,6/6 m. jobs

© Peter Klaus
Leipzig, May 2, 2012: Measuring Logistics
Chart Nr. 12
IV-2. … estimation of market segment sizes

Nat. Logistics Expenditure
€ 212 b. p.a.
IV-3. … establishment of a macro-economic input-output goods flow analysis

Illustration for Germany:

€ 2600 Mrd. GDP (2010) = value at 82m

€ 8000 Mrd. cumulative goods flow value i.e. all sales

6 Mio. business „nodes“
IV-4. … (very preliminary) international comparisons

Source: Klaus, Logistik „Märkte und Marktentwicklungen weltweit“ in: Baumgarten (Hrsg.) 2008

© Peter Klaus
Leipzig, May 2, 2012: Measuring Logistics
Chart Nr. 15
VI. Vision of a global „Logistics Expenditure and Performance Observatory“

- International agreement on „robust“ logistics definition
- ... estimation approaches and (minimum) data quality standards
- annual updates and publication
- definition of critical KPI‘s such as
 - logistics spending per capita
 - logistics spending per unit of GDP
 - corresponding transportation (warehousing, admin) KPI's
- Research and policy development based on input-output models: effects of industry structures, (post-industrialization) infrastructure qualities, etc.
- supported by ??
Thank you!